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Techniques & Applications

Independent component analysis (ICA) 

is a method for automatically identifying

the underlying factors in a given data set.

This rapidly evolving technique is currently

finding applications in analysis of

biomedical signals (e.g. ERP, EEG, fMRI,

optical imaging), and in models of visual

receptive fields and separation of speech

signals. This article illustrates these

applications, and provides an informal

introduction to ICA.

Independent component analysis 

(ICA) is essentially a method for

extracting individual signals from

mixtures of signals. Its power resides 

in the physically realistic assumption

that different physical processes

generate unrelated signals. The 

simple and generic nature of this

assumption ensures that ICA is being

successfully applied in a diverse range 

of research fields.

Despite its wide range of applicability,

ICA can be understood in terms of the

classic ‘cocktail party’problem, which ICA

solves in an ingenious manner. Consider a

cocktail party where many people are

talking at the same time. If a microphone

is present then its output is a mixture of

voices. When given such a mixture, ICA

identifies those individual signal

components of the mixture that are

unrelated. Given that the only unrelated

signal components within the signal

mixture are the voices of different people,

this is precisely what ICA finds.

(In practice, ICA requires more than one

simultaneously recorded mixture in order

to find the individual signals in any one

mixture.) It is worth stressing here that

ICA does not incorporate any knowledge

specific to speech signals; in order to work,

it requires simply that the individual

voice signals are unrelated.

On a more biological note, an EEG

signal from a single scalp electrode is a

mixture of signals from different brain

regions. As with the speech example

above, the signal recorded at each

electrode is a mixture, but it is the

individual components of the signal

mixtures that are of interest (e.g. single

voice, signal from a single brain region).

Finding these underlying ‘source’ signals

automatically is called ‘blind source

separation’ (BSS), and ICA the 

dominant method for performing BSS.

A critical caveat is that most BSS methods

require at least as many mixtures

(e.g. microphones, electrodes) as there

are source signals.

ICA in context: related methods

The goal of decomposing measured

signals, or variables, into a set of

underlying variables is far from new

(we use the terms ‘variable’ and ‘signal’

interchangeably here). For example, the

literature on IQ assessment describes

many methods for taking a set of

measured variables (i.e. sub-test scores)

and finding a set of underlying

competences (e.g. spatial reasoning).

In the language of BSS, this amounts to

decomposing a set of signal mixtures

(sub-test scores) into a set of source

signals (underlying competences). In

common with the IQ literature, many

fields of research involve identifying a

few key source signals from a large

number of signal mixtures. Techniques

commonly used for this data reduction

(or data mining, as it is now known) are

principal component analysis (PCA),

factor analysis (FA), linear dynamical

systems (LDS).

The most commonly used data

reduction methods (PCA and FA) identify

underlying variables that are

uncorrelated with each other. Intuitively,

this is desirable because the underlying

variables that account for a set of

measured variables should correspond to

physically different processes, which, in

turn, should have outputs that are

uncorrelated with each other. However,

specifying that underlying variables

should be uncorrelated imposes quite

weak constraints on the form these

variables take. It is the weakness of these

constraints which ensures that the

factors extracted by FA can be rotated

(in order to find a more interpretable set

of factors) without affecting the (zero)

correlations between factors. Most factor

rotation methods yield a statistically

equivalent set of uncorrelated factors.

The variety of factor rotation methods

available is regarded with some

skepticism by some researchers. This is

because it is sometimes possible to use

factor rotation to obtain new factors

which are easily interpreted, but which

are statistically no more significant than

results obtained with other factor

rotations. By contrast, any attempt to

rotate the factors (‘independent

components’) extracted by ICA would

yield non-independent factors. Thus, the

independent components of ICA do not

permit post-ICA rotations because such

factors are statistically independent, and

are therefore uniquely defined.

Independent components can also be

obtained by making use of the observation

that individual source signals tend to be

less complex than any mixture of those

source signals [1,2].

Statistical independence

ICA is based on the assumption that

source signals are not only uncorrelated,

but are also ‘statistically independent’.

Essentially, if two variables are

independent then the value of one

variable provides absolutely no

information about the value of the other

variable. By contrast, even though two

variables are uncorrelated, the value of

one variable can still provide information

about the value of the other variable

(see Box 1). ICA seeks a set of

statistically independent signals

amongst a set of ‘signal mixtures’, on

the assumption that such statistically

independent signals are derived from

different physical processes (Box 2).

The objective of finding such a set of

statistically independent signals is

achieved by maximizing a measure of the

‘joint entropy’ of the extracted signals.

What is it good for?

ICA has been applied in two fields of

research relevant to cognitive science:

analysis of biomedical data and

computational modelling. One of the

earliest biomedical applications of ICA
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If two variables (signals) x and y are
related then we usually expect that
knowing the value of x tells us something
about the corresponding value of y. For
example, if x is a person’s height and y is
their weight then knowing the value of x
provides some information about y. Here,
we consider how much information x
conveys about y when these variables are
uncorrelated and independent.

Uncorrelated variables

Even if x and y are uncorrelated then
knowing the value of x can still provide
information about about y. For example,
if we define x = sin(z) and y = cos(z)
(where z = 0…2π) then x and y are
uncorrelated (Fig. Ia; note that noise has
been added for display purposes).
However, the variables x 2 = sin2(z) and
y 2 = cos2(z) are (negatively) correlated; as
shown in Fig. Ib, which is a graph of x 2

versus y 2. Thus, knowing the value of x 2

(and therefore x) provides information

about y 2 (and therefore about y), even
though x and y are uncorrelated. For
example, in Fig. Ia, if x = 0.5 then it can
seen that either y ≈ –0.7 or y ≈ 0.7; so that
knowing x provides information about y.

Correlated variables

If two variables are correlated then
knowing the value of one variable
provides information about the
corresponding value value of the other
variable. For example, the variables in
Fig. Ib are negatively correlated
(r = –0.962), and if the x-axis variable is
0.4 then it can seen that the corresponding
y-axis variable is approximately 0.3.

Independent variables

If two signals are independent then
knowing the value of one signal provides
absolutely no information about the
corresponding value of the other signal.
For example, if two people are speaking
at the same time then knowing the

amplitude of one voice at any given
moment provides no information about
the value of the other voice at that
moment. In Fig. Ic, each point represents
the amplitudes of two voices at a single
moment in time; knowing the amplitude
(x value) of one voice provides no
information about the amplitude 
(y value) of the other voice.

Maximum entropy distributions

If two signals are plotted against each
other (as x and y in Fig. I) then this
approximates the joint ‘probability
density function’ (pdf) of the signals.
For signals with bounded values
(e.g. between 0 and 1), this joint pdf has
‘maximum entropy’ if it is uniform (as in
Fig. Id). Note that if a set of signals has a
maximum entropy pdf then this implies
that the signals are mutually independent,
but that a set of independent signals does
not necessarily have a pdf with maximum
entropy (e.g. Fig. Ic).

Box 1. Independent and uncorrelated variables
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Fig. I

The general strategy underlying ICA can
be summarized as follows.

(1) It is assumed that different physical
processes (e.g. two speakers) give rise to
unrelated source signals. Specifically,
source signals are assumed to be
statistically independent (see Box 1).

(2) A measured signal (e.g. a
microphone output) usually contains
contributions from many different
physical sources, and therefore consists
of a mixture of unrelated source signals.
[Note that most ICA methods require at
least as many simultaneously recorded

signal mixtures (e.g. microphone
outputs) as there are signal sources
(e.g. voices)].

(3) Unrelated signals are usually
statistically independent, and it can be
shown that a function g of independent
signals have ‘maximum entropy’ (see
Box 3). Therefore, if a set of signals with
maximum entropy can be recovered
from a set of mixtures then such signals
are independent.

(4) In practice, independent signals
are recovered from a set of mixtures by
adjusting a separating matrix W until 

the entropy of a fixed function g of
signals recovered by W is maximized
[where g is assumed to be the
cumulative density function (cdf) of
the source signals, see Box 3]. The
independence of signals recovered
by W is therefore achieved indirectly,
by adjusting W in order to maximize the
entropy of a function g of signals
recovered by W; as maximum entropy
signals are independent, it can be shown
that this ensures the estimated source
signals recovered by W are also
independent (see Boxes 1 and 3).

Box 2. ICA in a Nutshell



involved analysis of EEG data, where ICA

was used to recover signals associated

with detection of visual targets [3]

(see Box 3). In this case, the output

sequence of each electrode is assumed to

consist of a mixture of temporal

independent components (tICs), which

are extracted by temporal ICA (tICA).

Another application of tICA is in optical
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EEG

ICA has been used to recover ERP
temporal independent components (tICs)
associated with detection of visual targets
[a]. In this case, each electrode output is a
temporal mixture (analagous to a
microphone output in Box 4, Fig. Ia).
The signal recorded at each electrode is a
mixture of tICs, and temporal ICA (tICA)
is used to recover estimates of these
temporal independent components. 

fMRI

ICA was used to recover spatial
independent components (sICs) from fMRI
data [b]. In this case, the fMRI image
recorded at a given time is a mixture
(analagous to a face image in the middle
column of Box 4, Fig. Ib). The fMRI image
recorded at each time point is a mixture of

sICs, and spatial ICA (sICA) is used to
recover estimates of these sICs (Fig. I).

Optical imaging

Recently, ICA has been used in conjunction
with optical recording from the brain of a
sea slug Tritionia diomeda [c]. A 448
photodiode-detector array recorded neural
activity over an 8-second time period
(see Fig. II). The close proximity between
neurons ensured that each detector
recorded a mixture of action potentials
from many neurons. Temporal ICA (tICA)
was used to decompose the outputs of

detectors into a set of temporally
independent components (tICs).

References
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Box 3. Analysis of biomedical data
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Fig. I. (a) Brain activation recovered by principal
component analysis (PCA), and its associated time
course. (b) Brain activation recovered by a fourth
order projection pursuit method, and its associated
time course. (c) Brain activation recovered by ICA,
and its associated time course. The correlation (r)
between each extracted time course and the temporal
sequence of visual stimulation used is indicated in
each case, and of these three methods, it can be seen
that ICA gives the highest value of r. (Reproduced,
with permission, from Ref. b.)

Fig. II. (a) Mean 448-pixel image from array of 448 photodiode-detector array over 8 seconds (sampling rate
1kHz). (b) Temporal independent components (tICs) were classified into five colour-coded classes. Each tIC class
identifies a set of neurons with similar firing patterns. One tIC class (light blue, at bottom) identifies signal
artifacts. (c) The relative contribution of each detector to each colour-coded tIC, as denoted by height. Only tICs
corresponding to single neurons defined spatially localized clusters. By contrast, tICs associated with signal
artifacts defined spatially distributed detectors (bottom). (d) Spatial positions of neurons associated with each
colour-coded tIC class. (Reproduced, with permission, from Ref. c.)



imaging, where it has been used

to decompose the outputs of the

photodetector array used to record from

neurons of a sea slug [4]. Functional

magnetic resonance imaging data has also

been analysed using ICA [5]. Here, the

fMRI brain image collected at each time

point is treated as a mixture of spatial

independent components (sICs), which are

extracted by spatial ICA (sICA). Note that

sICA and tICA make use of the same core

ICA method; it is just that tICA seeks

temporally independent sequences in a set

of temporal mixtures, whereas sICA seeks

spatially independent images in a set of

image mixtures (Box 3).

The recent growth in interest in ICA

can be traced back to a (now classic) paper

[6], in which it was demonstrated how

temporal ICA could be used to solve a

simple ‘cocktail party’problem by

recovering single voices from voice

mixtures (see Box 4). From a modelling

perspective, it is thought that different

neurons might encode independent

physical attributes [7], because this

ensures maximum efficiency in

information-theoretic terms. ICA provides

a powerful method for finding such

independent attributes, which can then

be compared to attributes encoded by

neurons in primary sensory areas. This

approach has been demonstrated for

primary visual neurons [8] and spatial

ICA has also been applied to images of

faces (see Box 4).

Model-based vs data-driven methods

An ongoing debate in the analysis of

biomedical data concerns the relative

merits of model-based versus data-driven

methods [9]. ICA is an example of a data-

driven method, inasmuch as it is deemed

to be exploratory (other exploratory

methods are PCA and FA). By contrast,

conventional methods for analysing

biomedical data, especially fMRI data,

rely on model-based methods (also

known as parametric methods), such as

the ‘general linear model’ (GLM). For

example, with fMRI data, the GLM

extracts brain activations consistent with

the specific sequence of stimuli presented

to a subject.

The term ‘data driven’ is misleading

because it suggests that such methods

require no assumptions regarding the

data. In fact, all data-driven methods are

based on certain assumptions, even if

these assumptions are generic in nature.

For example, ICA depends critically on

the assumptions that each signal mixture

is a combination of source signals which

are independent and non-gaussian.

Similarly, the data-driven methods FA

and PCA are based on the assumption

that underlying source signals (factors

and eigenvectors, respectively) are

uncorrelated and gaussian.
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Speech separation

Given a set of N = 5 people speaking in a room with five
microphones, each voice si contributes differentially to each
microphone output xj [a]. The relative contribution of the five
voices to each of the five mixtures is specified by the elements
of an unknown 5 × 5 mixing matrix A (see Fig. Ia). Each element
in A is defined by the distance between each person and each
microphone. The output of each microphone is a mixture xj of
five independent source signals (voices) s = (s1,…,s5) (echoes
and time delays are ignored in this example). ICA finds a
separating matrix W which recovers five independent
components u. These recovered signals u are taken to be
estimates of the source signals s. (Note that ICA re-orders
signals, so that an extracted signal ui and its source signal si

are not necessarily on the same row.)

Face recognition

Fig. Ib shows how ICA treats each photograph X as a mixture of
underlying spatial independent components S [b]. It is assumed
that these unknown spatial independent components are mixed

together with an unknown mixing matrix matrix A to form the
observed photographs X. ICA finds a separating matrix W which
recovers estimates U of the spatial independent components S.
Note how the estimated spatial independent components U
contain spatially localized features corresponding to
perceptually salient features, such as mouth and eyes.

Modelling receptive fields

ICA of images of natural scenes (Fig. Ic) yields spatial
independent components which resemble edges or bars [c]
These independent components are similar to the receptive fields
of neurons in primary visual areas of the brain (also see [d]).
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Box 4. Computational modelling and applications
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Data-driven methods therefore

implicitly incorporate a generic, or weak,

model of the type of signals to be

extracted. The main difference between

such weak models and that of (for

example) GLM is that GLM attempts to

extract a specific signal that is a best fit

to a user-specified model signal. For

example, using fMRI, this user-specified

signal often consists of a temporal

sequence of zeros and ones corresponding

to visual stimuli being switched on and off;

a GLM (e.g. SPM) would then be used to

identify brain regions with temporal

activations which correlated with the

timing of this visual switching. By

contrast, data-driven methods extract a

signal that is consistent with a general
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The output of a microphone is a
time-varying signal , 
which is a linear mixture of N independent
source signals (i.e. voices). Each mixture
xi contains a contribution from each
source signal . The relative
amplitude of each voice sj at the
microphone is related to the microphone–
speaker distance, and can be defined as a
weighting factor Aij for each voice. If N = 2
then the relative contribution of each voice
sj to a mixture xi is,

where s=(s1,s2) is a vector variable in which
each variable is a source signal, and Ai is
the ith column of a matrix A of mixing
coefficients. If there are N = 2 microphones
then each voice sj has a different relative
amplitude (defined by Aij) at each
microphone, so that each microphone
records a different mixture xi:

<Equation 2>

where each column of the mixing matrix A
specifies the relative contributions of the
source signals s to each mixture xi. This
leads to the first equation in most papers
on ICA:

,

where x = (x1,x2) is a vector variable, 
and x1 and x2 are signal mixtures.

The matrix A defines a linear
transformation on the signals s. Such
linear transformations can usually be
reversed in order to recover an estimate u
of source signals s from signal mixtures x,

,

where the separating matrix W = A−1 is the
inverse of A. However, the mixing matrix A
is not known, and cannot therefore be
used to find W. The important point is that
a separating matrix W exists which maps a
set of N mixtures x to a set of N sources

signals u ≈ s (this exact inverse mapping
exists, but numerical methods find a close
approximation to it).

Given that we want to recover an
estimate u = xW of the source signals s and
that the latter are mutually independent
then this suggests that W should be
adjusted so as to make the estimated source
signals u mutually independent. This, in
turn, can be achieved by adjusting W to
maximize the entropy of U = g(u) = g(Wx),
where the function g is assumed to be
the cumulative density function (cdf) of s
(see Box 2).

If a set of signals x is mapped to
another set U then the entropy H(U) of U is
given by the entropy of x plus the change
in entropy ∆H induced by the mapping
from x to U, denoted (x → U),

As the entropy of the mixtures H(x) is
fixed, maximizing H(U) depends on
maximizing the change in entropy ∆H
associated with the mapping (x → U). The
mapping from x to U = g(Wx) depends on
two terms, the cumulative density
function g and the separating matrix W.
The form of g is fixed, which means that
maximizing H(U) amounts to maximizing
∆H by adjusting W. In summary, a matrix
W that maximizes the change in entropy
induced by the mapping (x → U) also
maximizes the joint entropy H(U).
The change in entropy ∆H induced by the
transformation g(Wx) can be considered
as the ratio of infinitesimal volumes
associated with corresponding points in x
and U. This ratio is given by the expected
value of ln J , where . denotes the
absolute value of the determinant of the
Jacobian matrix J = ∂U/∂x. Omitting
mathematical details, this yields:

where the summation over n samples
(plus ln W ) is an estimate of the expected

value of ln J , and the function
is the probability density

function (pdf) of the ith source signal. Note
that the entropy H(x) is a constant, and can
therefore be ignored because it does not
affect the value of W that maximizes H(U).

Given that u = Wx, the derivative
of H(U) with respect to W is

where

where g′′ (uj) is the second derivative of g.
Recall that we want to adjust W so 

that it maximizes H(U). The standard
method for adjusting W is gradient
ascent. This consists of iteratively adding
a small amount of the gradient of
H(U) to W,

where η is a learning rate. The function
H(U) can be maximized by gradient
ascent using either Eqn (9), or using the
more efficient ‘natural gradient’ [a].
Alternatively, if both the function H(U)
and its derivative can be evaluated
(as here) then a second order technique,
such as conjugate gradient, can be used
to obtain solutions relatively quickly.

The exposition above refers to
temporal ICA (tICA) of speech signals.
Spatial ICA (sICA) of images can be
achieved by concatenating rows or
columns of an image to produce a
one-dimensional image signal xi. Each
image xi is considered to be a mixture of
independent source images (see Fig. Ib,
Box 4). A set of N images is then
represented as an N-dimensional vector
variable x, as in Equation 3. Spatial ICs
can then be recovered using exactly the
same method as described for speech
signals above.

Reference

a Amari, S. (1998) Natural gradient works
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Box 5. The nuts and bolts of ICA



type of signal, where the signal type is

specified in terms of the general

statistical structure of the signal. Thus,

the models implicit in data-driven

methods are generic because they attempt

to extract a type of signal, rather than a

best fit to a specific model signal. The

difference between model-based and

data-driven methods is one of degree,

and involves the relative specificity of the

statistical assumptions associated with

each methods.

This suggests that both classes of

methods can be used, depending on the

specificity of the hypothesis being tested.

If there are sound reasons for

hypothesizing that a specific signal will be

present in the data (e.g. corresponding to a

sequence of visual stimuli) then a

model-based method might be preferred.

Conversely, if it is suspected that a

model-based method would not extract all

signals of interest then an exploratory

data-driven technique is appropriate.

On a pragmatic note, evaluating the

statistical significance of data-driven

methods tends to be more difficult than

that of model-based methods. Box 5 gives

some of the mathematical details of ICA.

Conclusion

ICA represents a novel and powerful

method, with applications in

computational neuroscience and

engineering. However, like all methods,

the success of ICA in a given application

depends on the validity of the

assumptions on which ICA is based. In

the case of ICA, the assumptions of linear

mixing and independence appear to be

physically realistic; which is perhaps why

it has been successfully applied to many

problems. However, these assumptions

are violated to some extent by most data

sets (see [9]). Whilst reports of ICA’s

successes are encouraging, they should

be treated with caution. Much

theoretical work remains to be done on

precisely how ICA fails when its

assumptions (i.e. linear mixing and

independence) are severely violated.
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